[1]
Belin, T., &
Lafitte, P. (2025). Quantitative estimates of
Lp maximal
regularity for nonautonomous operators and global existence for
quasilinear equations.
Electronic Journal of Differential
Equations,
18, 1–40.
https://doi.org/0.58997/ejde.2025.18
[2]
Goudon, T.,
Lafitte, P., &
Mascia, C. (2024). Shock profiles for
hydrodynamic models for fluid-particles flows in the flowing regime.
Physica D. Nonlinear Phenomena,
470,
Paper No. 134357, 22p.
https://doi.org/10.1016/j.physd.2024.134357
[3]
Lusardi, L.,
André, E.,
Castañeda,
I.,
Lemler, S.,
Lafitte, P.,
Zarzoso-Lacoste, D., &
Bonnaud, E. (2024). Methods for comparing
theoretical models parameterized with field data using biological
criteria and sobol analysis.
Ecological Modelling,
493, 110728.
https://doi.org/10.1016/j.ecolmodel.2024.110728
[4] Michel, O., Duclous, R., Masson-Laborde, P.-E., Enaux, C., & Lafitte, P. (2023). A nonlocal electron
transport model in the diffusion scaling of hydrodynamics. Physics
of Plasmas, 30(2).
[5] Dujardin, G., Hérau, F., & Lafitte, P. (2020). Coercivity, hypocoercivity,
exponential time decay and simulations for discrete
Fokker–Planck equations. Numerische
Mathematik, 144(3), 615–697.
[6] Lafitte, P., Melis, W., & Samaey, G. (2017). A high-order relaxation
method with projective integration for solving nonlinear systems of
hyperbolic conservation laws. Journal of Computational Physics,
340, 1–25.
[7] Grisey, A., Yon, S., Letort,
V., & Lafitte, P. (2016).
Simulation of high-intensity focused ultrasound lesions in presence of
boiling. Journal of Therapeutic Ultrasound,
4(1), 1–14.
[8] Grisey, A., Heidmann, M., Letort,
V., Lafitte, P., & Yon, S. (2016). Influence of skin and
subcutaneous tissue on high-intensity focused ultrasound beam:
Experimental quantification and numerical modeling. Ultrasound in
Medicine and Biology, 42(10), 2457–2465.
[9] Dujardin, G., & Lafitte, P. (2016). Asymptotic behaviour of
splitting schemes involving time-subcycling techniques. IMA Journal
of Numerical Analysis, 36(4), 1804–1841.
[10] Lafitte, P., Lejon, A., & Samaey, G. (2016). A high-order
asymptotic-preserving scheme for kinetic equations using projective
integration. SIAM Journal on Numerical Analysis,
54(1), 1–33.
[11] Goudon, T., & Lafitte, P. (2015). The lovebirds problem: Why
solve Hamilton-Jacobi-Bellman
equations matters in love affairs. Acta Applicandae
Mathematicae, 136(1), 147–165.
[12] Lafitte, P., Lejon, A., Melis,
W., Roose, D., & Samaey, G. (2015). High-order
asymptotic-preserving projective integration schemes for kinetic
equations. Lecture Notes in Computational Science and
Engineering, 103, 387–395.
[13] Lafitte-Godillon, P., Raschel, K., & Tran, V. C. (2013). Extinction probabilities
for a distylous plant population modeled by an inhomogeneous random walk
on the positive quadrant. SIAM Journal on Applied Mathematics,
73(2), 700–722.
[14] Vecil, F., Lafitte, P., & Linares, J. R. (2013). A numerical study of
attraction/repulsion collective behavior models: 3D particle analyses
and 1D kinetic simulations. Physica D: Nonlinear Phenomena,
260, 127–144.
[15] Blossey, R., Bodart, J.-F., Devys,
A., Goudon, T., & Lafitte, P. (2012). Signal propagation of the
MAPK cascade in xenopus oocytes: Role of bistability and
ultrasensitivity for a mixed problem. Journal of Mathematical
Biology, 64(1-2), 1–39.
[16] Lafitte, P., & Mascia, C. (2012). Numerical exploration of a
forward-backward diffusion equation. Mathematical Models and Methods
in Applied Sciences, 22(6).
[17] Lafitte, P., & Samaey, G. (2012). Asymptotic-preserving
projective integration schemes for kinetic equations in the diffusion
limit. SIAM Journal on Scientific Computing,
34(2).
[18] Coulombel, J.-F., Goudon, T., Lafitte,
P., & Lin, C. (2012). Analysis
of large amplitude shock profiles for non-equilibrium radiative
hydrodynamics: Formation of Zeldovich spikes. Shock
Waves, 22(3), 181–197.
[19] Aguer, B., Bièvre, S. D., Lafitte,
P., & Parris, P. E. (2010).
Classical motion in force fields with short range correlations.
Journal of Statistical Physics,
138(4), 780–814.
[20] Coulombel, J.-F., & Lafitte, P. (2009). Computation of shock
profiles in radiative hydrodynamics. Communications in Computational
Physics, 6(5), 1118–1136.
[21] Devys, A., Goudon, T., & Lafitte, P. (2009). A model describing the
growth and the size distribution of multiple metastatic tumors.
Discrete and Continuous Dynamical Systems - Series B,
12(4), 731–767.
[22] Carrillo, J. Antonio, Goudon, T., & Lafitte, P. (2008). Simulation of fluid and
particles flows: Asymptotic preserving schemes for bubbling and flowing
regimes. Journal of Computational Physics,
227(16), 7929–7951.
[23] Carrillo, J. Antonio, Goudon, T., Lafitte,
P., & Vecil, F. (2008).
Numerical schemes of diffusion asymptotics and moment closures for
kinetic equations. Journal of Scientific Computing,
36(1), 113–149.
[24] Lafitte, P., Parris, P. E., & Bièvre, S. D. (2008). Normal transport
properties in a metastable stationary state for a classical particle
coupled to a non-ohmic bath. Journal of Statistical Physics,
132(5), 863–879.
[25] Godillon-Lafitte, P., & Goudon, T. (2005). A coupled model for
radiative transfer: Doppler effects, equilibrium, and
nonequilibrium diffusion asymptotics. Multiscale Modeling and
Simulation, 4(4), 1245–1279.
[26] Godillon, P. (2003).
Green’s function pointwise estimates for the
modified lax-friedrichs scheme. Mathematical Modelling and Numerical
Analysis, 37(1), 1–39.
[27] Godillon, P., & Lorin, E. (2003). A Lax shock
profile satisfying a sufficient condition of spectral instability.
Journal of Mathematical Analysis and Applications,
283(1), 12–24.
[28] Godillon, P. (2001). Linear
stability of shock profiles for systems of conservation laws with
semi-linear relaxation. Physica D: Nonlinear Phenomena,
148(3-4), 289–316.
[1] Goudon, T., Lafitte, P., & Mascia, C. (2023). Shock profiles for
hydrodynamic models for fluid-particles flows in the flowing regime. In
Carlos Parés, T. M. de L., Manuel J. Castro & Muñoz-Ruiz, M. Luz
(Eds.), Proceedings of XVIII international conference on hyperbolic
problems: Theory, numerics, applications (HYP2022).
[2] Taki, A.-B., Atsou, K., Casanova,
J.-J., Goudon, T., Lafitte, P., Lagoutière, F., & Minjeaud, S. (2021). Numerical investigations
of the compressible Navier-Stokes system. In
Chaï, D. & Lelièvre, T. (Eds.), CEMRACS 2019 - geophysical
fluids, gravity flows (Vol. 70, pp. 1–13). EDP Sciences.
[3] Grisey, A., Yon, S., Pechoux,
T., Letort, V., & Lafitte, P. (2017). Numerical study and ex vivo
assessment of HIFU treatment time reduction through
optimization of focal point trajectory. In Ebbini, E. S. (Ed.),
Proceedings from the 14th international symposium on therapeutic
ultrasound (Vol. 1821).
[4] Lafitte, P. (2011). Preface of the
"symposium on asymptotic preserving schemes and
applications". In Simos, T. E. (Ed.), ICNAAM 2011
(Vol. 1389).
[5]
Goudon, T.,
Lafitte, P., &
Rousset, M. (2010). Modeling and simulation of
fluid-particles flows. In Li, T.-T. (Ed.),
Some problems on
nonlinear hyperbolic equations and applications (Vol. 15, pp.
100–130). Higher Ed. Press, Beijing.
https://doi.org/10.1142/9789814322898\_0005
[6]
Boudin, L.,
Boutin, B.,
Fornet,
B.,
Goudon, T.,
Lafitte, P.,
Lagoutière, F., &
Merlet, B. (2009). Fluid-particles flows: A
thin spray model with energy exchanges. In Mourad Ismail, J.-F. G.,
Bertrand Maury (Ed.),
CEMRACS
2008—Modelling and numerical simulation of complex
fluids (Vol. 28, pp. 195–210). EDP Sci., Les Ulis.
https://doi.org/10.1051/proc/2009047
[7]
De Bièvre, S.,
Lafitte, P., &
Parris, P. E. (2007). Normal transport at
positive temperatures in classical
Hamiltonian open
systems. In Jean-Michel Combes, F. G. (Ed.),
Adventures in
mathematical physics (Vol. 447, pp. 57–71). Amer. Math. Soc.,
Providence, RI.
https://doi.org/10.1090/conm/447/08682
[8] Godillon-Lafitte, P. (2003). Green’s
function pointwise estimates for the modified
Lax-Friedrichs scheme. In Tadmor, T. Y. Hou.
E. (Ed.), Hyperbolic problems: Theory, numerics, applications
(pp. 539–547). Springer, Berlin.
[9] Godillon, P. (2001). Linear stability
of shock profiles for systems of conservation laws with semi-linear
relaxation. In Freistühler, H. (Ed.), Hyperbolic problems: Theory,
numerics, applications, Vol. I,
II (Magdeburg, 2000) (Vol. 140, pp.
445–452). Birkhäuser, Basel.