Pauline Lafitte

Version française

Presentation

Contact/Info

Education

Professional appointments

Research

Research themes

Publications

PhD students

Interns

Participation in research networks

Talks

Teaching

Audiences

Teaching areas

Service

University/School service

Regional service

Community service

Languages

Machine

Human

Bibliography

Preprints

[1] Belin, T., Lafitte-Godillon, P., Lescarret, V., Mascia, C., & Fuhrmann, J. (2024). Entropy solutions of a diffusion equation with discontinuous hysteresis and their finite volume approximation.
[2] Dujardin, G., & Lafitte, P. (2023). Uniform estimates for a fully discrete scheme integrating the linear heat equation on a bounded interval with pure Neumann boundary conditions. https://arxiv.org/abs/2312.00058

Articles

[1] Belin, T., & Lafitte, P. (2025). Quantitative estimates of Lp maximal regularity for nonautonomous operators and global existence for quasilinear equations. Electronic Journal of Differential Equations, 18, 1–40. https://doi.org/0.58997/ejde.2025.18
[2] Goudon, T., Lafitte, P., & Mascia, C. (2024). Shock profiles for hydrodynamic models for fluid-particles flows in the flowing regime. Physica D. Nonlinear Phenomena, 470, Paper No. 134357, 22p. https://doi.org/10.1016/j.physd.2024.134357
[3] Lusardi, L., André, E., Castañeda, I., Lemler, S., Lafitte, P., Zarzoso-Lacoste, D., & Bonnaud, E. (2024). Methods for comparing theoretical models parameterized with field data using biological criteria and sobol analysis. Ecological Modelling, 493, 110728. https://doi.org/10.1016/j.ecolmodel.2024.110728
[4] Michel, O., Duclous, R., Masson-Laborde, P.-E., Enaux, C., & Lafitte, P. (2023). A nonlocal electron transport model in the diffusion scaling of hydrodynamics. Physics of Plasmas, 30(2).
[5] Dujardin, G., Hérau, F., & Lafitte, P. (2020). Coercivity, hypocoercivity, exponential time decay and simulations for discrete Fokker–Planck equations. Numerische Mathematik, 144(3), 615–697.
[6] Lafitte, P., Melis, W., & Samaey, G. (2017). A high-order relaxation method with projective integration for solving nonlinear systems of hyperbolic conservation laws. Journal of Computational Physics, 340, 1–25.
[7] Grisey, A., Yon, S., Letort, V., & Lafitte, P. (2016). Simulation of high-intensity focused ultrasound lesions in presence of boiling. Journal of Therapeutic Ultrasound, 4(1), 1–14.
[8] Grisey, A., Heidmann, M., Letort, V., Lafitte, P., & Yon, S. (2016). Influence of skin and subcutaneous tissue on high-intensity focused ultrasound beam: Experimental quantification and numerical modeling. Ultrasound in Medicine and Biology, 42(10), 2457–2465.
[9] Dujardin, G., & Lafitte, P. (2016). Asymptotic behaviour of splitting schemes involving time-subcycling techniques. IMA Journal of Numerical Analysis, 36(4), 1804–1841.
[10] Lafitte, P., Lejon, A., & Samaey, G. (2016). A high-order asymptotic-preserving scheme for kinetic equations using projective integration. SIAM Journal on Numerical Analysis, 54(1), 1–33.
[11] Goudon, T., & Lafitte, P. (2015). The lovebirds problem: Why solve Hamilton-Jacobi-Bellman equations matters in love affairs. Acta Applicandae Mathematicae, 136(1), 147–165.
[12] Lafitte, P., Lejon, A., Melis, W., Roose, D., & Samaey, G. (2015). High-order asymptotic-preserving projective integration schemes for kinetic equations. Lecture Notes in Computational Science and Engineering, 103, 387–395.
[13] Lafitte-Godillon, P., Raschel, K., & Tran, V. C. (2013). Extinction probabilities for a distylous plant population modeled by an inhomogeneous random walk on the positive quadrant. SIAM Journal on Applied Mathematics, 73(2), 700–722.
[14] Vecil, F., Lafitte, P., & Linares, J. R. (2013). A numerical study of attraction/repulsion collective behavior models: 3D particle analyses and 1D kinetic simulations. Physica D: Nonlinear Phenomena, 260, 127–144.
[15] Blossey, R., Bodart, J.-F., Devys, A., Goudon, T., & Lafitte, P. (2012). Signal propagation of the MAPK cascade in xenopus oocytes: Role of bistability and ultrasensitivity for a mixed problem. Journal of Mathematical Biology, 64(1-2), 1–39.
[16] Lafitte, P., & Mascia, C. (2012). Numerical exploration of a forward-backward diffusion equation. Mathematical Models and Methods in Applied Sciences, 22(6).
[17] Lafitte, P., & Samaey, G. (2012). Asymptotic-preserving projective integration schemes for kinetic equations in the diffusion limit. SIAM Journal on Scientific Computing, 34(2).
[18] Coulombel, J.-F., Goudon, T., Lafitte, P., & Lin, C. (2012). Analysis of large amplitude shock profiles for non-equilibrium radiative hydrodynamics: Formation of Zeldovich spikes. Shock Waves, 22(3), 181–197.
[19] Aguer, B., Bièvre, S. D., Lafitte, P., & Parris, P. E. (2010). Classical motion in force fields with short range correlations. Journal of Statistical Physics, 138(4), 780–814.
[20] Coulombel, J.-F., & Lafitte, P. (2009). Computation of shock profiles in radiative hydrodynamics. Communications in Computational Physics, 6(5), 1118–1136.
[21] Devys, A., Goudon, T., & Lafitte, P. (2009). A model describing the growth and the size distribution of multiple metastatic tumors. Discrete and Continuous Dynamical Systems - Series B, 12(4), 731–767.
[22] Carrillo, J. Antonio, Goudon, T., & Lafitte, P. (2008). Simulation of fluid and particles flows: Asymptotic preserving schemes for bubbling and flowing regimes. Journal of Computational Physics, 227(16), 7929–7951.
[23] Carrillo, J. Antonio, Goudon, T., Lafitte, P., & Vecil, F. (2008). Numerical schemes of diffusion asymptotics and moment closures for kinetic equations. Journal of Scientific Computing, 36(1), 113–149.
[24] Lafitte, P., Parris, P. E., & Bièvre, S. D. (2008). Normal transport properties in a metastable stationary state for a classical particle coupled to a non-ohmic bath. Journal of Statistical Physics, 132(5), 863–879.
[25] Godillon-Lafitte, P., & Goudon, T. (2005). A coupled model for radiative transfer: Doppler effects, equilibrium, and nonequilibrium diffusion asymptotics. Multiscale Modeling and Simulation, 4(4), 1245–1279.
[26] Godillon, P. (2003). Greens function pointwise estimates for the modified lax-friedrichs scheme. Mathematical Modelling and Numerical Analysis, 37(1), 1–39.
[27] Godillon, P., & Lorin, E. (2003). A Lax shock profile satisfying a sufficient condition of spectral instability. Journal of Mathematical Analysis and Applications, 283(1), 12–24.
[28] Godillon, P. (2001). Linear stability of shock profiles for systems of conservation laws with semi-linear relaxation. Physica D: Nonlinear Phenomena, 148(3-4), 289–316.

Proceedings

[1] Goudon, T., Lafitte, P., & Mascia, C. (2023). Shock profiles for hydrodynamic models for fluid-particles flows in the flowing regime. In Carlos Parés, T. M. de L., Manuel J. Castro & Muñoz-Ruiz, M. Luz (Eds.), Proceedings of XVIII international conference on hyperbolic problems: Theory, numerics, applications (HYP2022).
[2] Taki, A.-B., Atsou, K., Casanova, J.-J., Goudon, T., Lafitte, P., Lagoutière, F., & Minjeaud, S. (2021). Numerical investigations of the compressible Navier-Stokes system. In Chaï, D. & Lelièvre, T. (Eds.), CEMRACS 2019 - geophysical fluids, gravity flows (Vol. 70, pp. 1–13). EDP Sciences.
[3] Grisey, A., Yon, S., Pechoux, T., Letort, V., & Lafitte, P. (2017). Numerical study and ex vivo assessment of HIFU treatment time reduction through optimization of focal point trajectory. In Ebbini, E. S. (Ed.), Proceedings from the 14th international symposium on therapeutic ultrasound (Vol. 1821).
[4] Lafitte, P. (2011). Preface of the "symposium on asymptotic preserving schemes and applications". In Simos, T. E. (Ed.), ICNAAM 2011 (Vol. 1389).
[5] Goudon, T., Lafitte, P., & Rousset, M. (2010). Modeling and simulation of fluid-particles flows. In Li, T.-T. (Ed.), Some problems on nonlinear hyperbolic equations and applications (Vol. 15, pp. 100–130). Higher Ed. Press, Beijing. https://doi.org/10.1142/9789814322898\_0005
[6] Boudin, L., Boutin, B., Fornet, B., Goudon, T., Lafitte, P., Lagoutière, F., & Merlet, B. (2009). Fluid-particles flows: A thin spray model with energy exchanges. In Mourad Ismail, J.-F. G., Bertrand Maury (Ed.), CEMRACS 2008—Modelling and numerical simulation of complex fluids (Vol. 28, pp. 195–210). EDP Sci., Les Ulis. https://doi.org/10.1051/proc/2009047
[7] De Bièvre, S., Lafitte, P., & Parris, P. E. (2007). Normal transport at positive temperatures in classical Hamiltonian open systems. In Jean-Michel Combes, F. G. (Ed.), Adventures in mathematical physics (Vol. 447, pp. 57–71). Amer. Math. Soc., Providence, RI. https://doi.org/10.1090/conm/447/08682
[8] Godillon-Lafitte, P. (2003). Green’s function pointwise estimates for the modified Lax-Friedrichs scheme. In Tadmor, T. Y. Hou. E. (Ed.), Hyperbolic problems: Theory, numerics, applications (pp. 539–547). Springer, Berlin.
[9] Godillon, P. (2001). Linear stability of shock profiles for systems of conservation laws with semi-linear relaxation. In Freistühler, H. (Ed.), Hyperbolic problems: Theory, numerics, applications, Vol. I, II (Magdeburg, 2000) (Vol. 140, pp. 445–452). Birkhäuser, Basel.

Books

[1] Herbin, E., & Lafitte, P. (2025). Modern mathematical concepts for the engineer – Part I - from infinitesimal calculus to measure theory. World Scientific Publishing Company.

Memoirs

[1] Lafitte-Godillon, P. (2010). Exploration numérique de comportements asymptotiques pour des équations de transport-diffusion [Habilitation à diriger des recherches, Université des Sciences et Technologie de Lille - Lille I]. https://theses.hal.science/tel-00768679
[2] Lafitte-Godillon, P. (2001). Stabilité des profils de chocs dans les systèmes de lois de conservation (pp. 1 vol. (166 p.)) [Thèse de doctorat, ENS Lyon]. http://www.theses.fr/2001ENSL0208