Pauline Lafitte

English version

Présentation

Contact/Info

Formation académique

Expérience professionnelle

Recherche

Domaines de recherche

Publications

Doctorants

Participation à des réseaux de recherche

Exposés

Enseignement

Types de publics

Thèmes d’enseignement

Responsabilités collectives

Responsabilités locales

Responsabilités régionales

Responsabilités nationales

Langages et langues

Machine

Langues étrangères

Bibliographie

Prépublications

[1] Belin, T., & Lafitte, P. (2024). Quantitative estimates of Lp maximal regularity for nonautonomous operators and global existence for quasilinear equations. https://arxiv.org/abs/2403.00386
[2] Belin, T., Lafitte-Godillon, P., Lescarret, V., Mascia, C., & Fuhrmann, J. (2024). Entropy solutions of a diffusion equation with discontinuous hysteresis and their finite volume approximation.
[3] Dujardin, G., & Lafitte, P. (2023). Uniform estimates for a fully discrete scheme integrating the linear heat equation on a bounded interval with pure Neumann boundary conditions. https://arxiv.org/abs/2312.00058

Articles

[1] Goudon, T., Lafitte, P., & Mascia, C. (2024). Shock profiles for hydrodynamic models for fluid-particles flows in the flowing regime. Physica D. Nonlinear Phenomena, 470, Paper No. 134357, 22p. https://doi.org/10.1016/j.physd.2024.134357
[2] Lusardi, L., André, E., Castañeda, I., Lemler, S., Lafitte, P., Zarzoso-Lacoste, D., & Bonnaud, E. (2024). Methods for comparing theoretical models parameterized with field data using biological criteria and sobol analysis. Ecological Modelling, 493, 110728. https://doi.org/10.1016/j.ecolmodel.2024.110728
[3] Michel, O., Duclous, R., Masson-Laborde, P.-E., Enaux, C., & Lafitte, P. (2023). A nonlocal electron transport model in the diffusion scaling of hydrodynamics. Physics of Plasmas, 30(2).
[4] Dujardin, G., Hérau, F., & Lafitte, P. (2020). Coercivity, hypocoercivity, exponential time decay and simulations for discrete Fokker–Planck equations. Numerische Mathematik, 144(3), 615–697.
[5] Lafitte, P., Melis, W., & Samaey, G. (2017). A high-order relaxation method with projective integration for solving nonlinear systems of hyperbolic conservation laws. Journal of Computational Physics, 340, 1–25.
[6] Grisey, A., Yon, S., Letort, V., & Lafitte, P. (2016). Simulation of high-intensity focused ultrasound lesions in presence of boiling. Journal of Therapeutic Ultrasound, 4(1), 1–14.
[7] Grisey, A., Heidmann, M., Letort, V., Lafitte, P., & Yon, S. (2016). Influence of skin and subcutaneous tissue on high-intensity focused ultrasound beam: Experimental quantification and numerical modeling. Ultrasound in Medicine and Biology, 42(10), 2457–2465.
[8] Dujardin, G., & Lafitte, P. (2016). Asymptotic behaviour of splitting schemes involving time-subcycling techniques. IMA Journal of Numerical Analysis, 36(4), 1804–1841.
[9] Lafitte, P., Lejon, A., & Samaey, G. (2016). A high-order asymptotic-preserving scheme for kinetic equations using projective integration. SIAM Journal on Numerical Analysis, 54(1), 1–33.
[10] Goudon, T., & Lafitte, P. (2015). The lovebirds problem: Why solve Hamilton-Jacobi-Bellman equations matters in love affairs. Acta Applicandae Mathematicae, 136(1), 147–165.
[11] Lafitte, P., Lejon, A., Melis, W., Roose, D., & Samaey, G. (2015). High-order asymptotic-preserving projective integration schemes for kinetic equations. Lecture Notes in Computational Science and Engineering, 103, 387–395.
[12] Lafitte-Godillon, P., Raschel, K., & Tran, V. C. (2013). Extinction probabilities for a distylous plant population modeled by an inhomogeneous random walk on the positive quadrant. SIAM Journal on Applied Mathematics, 73(2), 700–722.
[13] Vecil, F., Lafitte, P., & Linares, J. R. (2013). A numerical study of attraction/repulsion collective behavior models: 3D particle analyses and 1D kinetic simulations. Physica D: Nonlinear Phenomena, 260, 127–144.
[14] Blossey, R., Bodart, J.-F., Devys, A., Goudon, T., & Lafitte, P. (2012). Signal propagation of the MAPK cascade in xenopus oocytes: Role of bistability and ultrasensitivity for a mixed problem. Journal of Mathematical Biology, 64(1-2), 1–39.
[15] Lafitte, P., & Mascia, C. (2012). Numerical exploration of a forward-backward diffusion equation. Mathematical Models and Methods in Applied Sciences, 22(6).
[16] Lafitte, P., & Samaey, G. (2012). Asymptotic-preserving projective integration schemes for kinetic equations in the diffusion limit. SIAM Journal on Scientific Computing, 34(2).
[17] Coulombel, J.-F., Goudon, T., Lafitte, P., & Lin, C. (2012). Analysis of large amplitude shock profiles for non-equilibrium radiative hydrodynamics: Formation of Zeldovich spikes. Shock Waves, 22(3), 181–197.
[18] Aguer, B., Bièvre, S. D., Lafitte, P., & Parris, P. E. (2010). Classical motion in force fields with short range correlations. Journal of Statistical Physics, 138(4), 780–814.
[19] Coulombel, J.-F., & Lafitte, P. (2009). Computation of shock profiles in radiative hydrodynamics. Communications in Computational Physics, 6(5), 1118–1136.
[20] Devys, A., Goudon, T., & Lafitte, P. (2009). A model describing the growth and the size distribution of multiple metastatic tumors. Discrete and Continuous Dynamical Systems - Series B, 12(4), 731–767.
[21] Carrillo, J. Antonio, Goudon, T., & Lafitte, P. (2008). Simulation of fluid and particles flows: Asymptotic preserving schemes for bubbling and flowing regimes. Journal of Computational Physics, 227(16), 7929–7951.
[22] Carrillo, J. Antonio, Goudon, T., Lafitte, P., & Vecil, F. (2008). Numerical schemes of diffusion asymptotics and moment closures for kinetic equations. Journal of Scientific Computing, 36(1), 113–149.
[23] Lafitte, P., Parris, P. E., & Bièvre, S. D. (2008). Normal transport properties in a metastable stationary state for a classical particle coupled to a non-ohmic bath. Journal of Statistical Physics, 132(5), 863–879.
[24] Godillon-Lafitte, P., & Goudon, T. (2005). A coupled model for radiative transfer: Doppler effects, equilibrium, and nonequilibrium diffusion asymptotics. Multiscale Modeling and Simulation, 4(4), 1245–1279.
[25] Godillon, P. (2003). Greens function pointwise estimates for the modified lax-friedrichs scheme. Mathematical Modelling and Numerical Analysis, 37(1), 1–39.
[26] Godillon, P., & Lorin, E. (2003). A Lax shock profile satisfying a sufficient condition of spectral instability. Journal of Mathematical Analysis and Applications, 283(1), 12–24.
[27] Godillon, P. (2001). Linear stability of shock profiles for systems of conservation laws with semi-linear relaxation. Physica D: Nonlinear Phenomena, 148(3-4), 289–316.

Actes de conférence

[1] Goudon, T., Lafitte, P., & Mascia, C. (2023). Shock profiles for hydrodynamic models for fluid-particles flows in the flowing regime. Accepted for Publication in Proceedings of XVIII International Conference on Hyperbolic Problems: Theory, Numerics, Applications (HYP2022).
[2] Taki, A.-B., Atsou, K., Casanova, J.-J., Goudon, T., Lafitte, P., Lagoutière, F., & Minjeaud, S. (2021). Numerical investigations of the compressible Navier-Stokes system. In ESAIM: Proceedings and Surveys (Vol. 70, pp. 1–13). EDP Sciences.
[3] Grisey, A., Yon, S., Pechoux, T., Letort, V., & Lafitte, P. (2017). Numerical study and ex vivo assessment of HIFU treatment time reduction through optimization of focal point trajectory. In AIP Conference Proceedings (Vol. 1821).
[4] Lafitte, P. (2011). Preface of the "symposium on asymptotic preserving schemes and applications". In AIP Conference Proceedings (Vol. 1389).
[5] Goudon, T., Lafitte, P., & Rousset, M. (2010). Modeling and simulation of fluid-particles flows. In Some problems on nonlinear hyperbolic equations and applications (Vol. 15, pp. 100–130). Higher Ed. Press, Beijing. https://doi.org/10.1142/9789814322898\_0005
[6] Boudin, L., Boutin, B., Fornet, B., Goudon, T., Lafitte, P., Lagoutière, F., & Merlet, B. (2009). Fluid-particles flows: A thin spray model with energy exchanges. In CEMRACS 2008—Modelling and numerical simulation of complex fluids (Vol. 28, pp. 195–210). EDP Sci., Les Ulis. https://doi.org/10.1051/proc/2009047
[7] De Bièvre, S., Lafitte, P., & Parris, P. E. (2007). Normal transport at positive temperatures in classical Hamiltonian open systems. In Adventures in mathematical physics (Vol. 447, pp. 57–71). Amer. Math. Soc., Providence, RI. https://doi.org/10.1090/conm/447/08682
[8] Godillon-Lafitte, P. (2003). Green’s function pointwise estimates for the modified Lax-Friedrichs scheme. In Hyperbolic problems: Theory, numerics, applications (pp. 539–547). Springer, Berlin.
[9] Godillon, P. (2001). Linear stability of shock profiles for systems of conservation laws with semi-linear relaxation. In Hyperbolic problems: Theory, numerics, applications, Vol. I, II (Magdeburg, 2000) (Vols. 140, 141, pp. 445–452). Birkhäuser, Basel.

Livres

[1] Herbin, E., & Lafitte, P. (à paraître en 2025). Modern mathematical concepts for the engineer – Part I - from infinitesimal calculus to measure theory. World Scientific Publishing Company.

Manuscrits

[1] Lafitte-Godillon, P. (2010). Exploration numérique de comportements asymptotiques pour des équations de transport-diffusion [Habilitation à diriger des recherches, Université des Sciences et Technologie de Lille - Lille I]. https://theses.hal.science/tel-00768679
[2] Lafitte-Godillon, P. (2001). Stabilité des profils de chocs dans les systèmes de lois de conservation (pp. 1 vol. (166 p.)) [Thèse de doctorat, ENS Lyon]. http://www.theses.fr/2001ENSL0208