[1]
Goudon, T.,
Lafitte, P., &
Mascia, C. (2024). Shock profiles for
hydrodynamic models for fluid-particles flows in the flowing regime.
Physica D. Nonlinear Phenomena,
470,
Paper No. 134357, 22p.
https://doi.org/10.1016/j.physd.2024.134357
[2]
Lusardi, L.,
André, E.,
Castañeda,
I.,
Lemler, S.,
Lafitte, P.,
Zarzoso-Lacoste, D., &
Bonnaud, E. (2024). Methods for comparing
theoretical models parameterized with field data using biological
criteria and sobol analysis.
Ecological Modelling,
493, 110728.
https://doi.org/10.1016/j.ecolmodel.2024.110728
[3] Michel, O., Duclous, R., Masson-Laborde, P.-E., Enaux, C., & Lafitte, P. (2023). A nonlocal electron
transport model in the diffusion scaling of hydrodynamics. Physics
of Plasmas, 30(2).
[4] Dujardin, G., Hérau, F., & Lafitte, P. (2020). Coercivity, hypocoercivity,
exponential time decay and simulations for discrete
Fokker–Planck equations. Numerische
Mathematik, 144(3), 615–697.
[5] Lafitte, P., Melis, W., & Samaey, G. (2017). A high-order relaxation
method with projective integration for solving nonlinear systems of
hyperbolic conservation laws. Journal of Computational Physics,
340, 1–25.
[6] Grisey, A., Yon, S., Letort,
V., & Lafitte, P. (2016).
Simulation of high-intensity focused ultrasound lesions in presence of
boiling. Journal of Therapeutic Ultrasound,
4(1), 1–14.
[7] Grisey, A., Heidmann, M., Letort,
V., Lafitte, P., & Yon, S. (2016). Influence of skin and
subcutaneous tissue on high-intensity focused ultrasound beam:
Experimental quantification and numerical modeling. Ultrasound in
Medicine and Biology, 42(10), 2457–2465.
[8] Dujardin, G., & Lafitte, P. (2016). Asymptotic behaviour of
splitting schemes involving time-subcycling techniques. IMA Journal
of Numerical Analysis, 36(4), 1804–1841.
[9] Lafitte, P., Lejon, A., & Samaey, G. (2016). A high-order
asymptotic-preserving scheme for kinetic equations using projective
integration. SIAM Journal on Numerical Analysis,
54(1), 1–33.
[10] Goudon, T., & Lafitte, P. (2015). The lovebirds problem: Why
solve Hamilton-Jacobi-Bellman
equations matters in love affairs. Acta Applicandae
Mathematicae, 136(1), 147–165.
[11] Lafitte, P., Lejon, A., Melis,
W., Roose, D., & Samaey, G. (2015). High-order
asymptotic-preserving projective integration schemes for kinetic
equations. Lecture Notes in Computational Science and
Engineering, 103, 387–395.
[12] Lafitte-Godillon, P., Raschel, K., & Tran, V. C. (2013). Extinction probabilities
for a distylous plant population modeled by an inhomogeneous random walk
on the positive quadrant. SIAM Journal on Applied Mathematics,
73(2), 700–722.
[13] Vecil, F., Lafitte, P., & Linares, J. R. (2013). A numerical study of
attraction/repulsion collective behavior models: 3D particle analyses
and 1D kinetic simulations. Physica D: Nonlinear Phenomena,
260, 127–144.
[14] Blossey, R., Bodart, J.-F., Devys,
A., Goudon, T., & Lafitte, P. (2012). Signal propagation of the
MAPK cascade in xenopus oocytes: Role of bistability and
ultrasensitivity for a mixed problem. Journal of Mathematical
Biology, 64(1-2), 1–39.
[15] Lafitte, P., & Mascia, C. (2012). Numerical exploration of a
forward-backward diffusion equation. Mathematical Models and Methods
in Applied Sciences, 22(6).
[16] Lafitte, P., & Samaey, G. (2012). Asymptotic-preserving
projective integration schemes for kinetic equations in the diffusion
limit. SIAM Journal on Scientific Computing,
34(2).
[17] Coulombel, J.-F., Goudon, T., Lafitte,
P., & Lin, C. (2012). Analysis
of large amplitude shock profiles for non-equilibrium radiative
hydrodynamics: Formation of Zeldovich spikes. Shock
Waves, 22(3), 181–197.
[18] Aguer, B., Bièvre, S. D., Lafitte,
P., & Parris, P. E. (2010).
Classical motion in force fields with short range correlations.
Journal of Statistical Physics,
138(4), 780–814.
[19] Coulombel, J.-F., & Lafitte, P. (2009). Computation of shock
profiles in radiative hydrodynamics. Communications in Computational
Physics, 6(5), 1118–1136.
[20] Devys, A., Goudon, T., & Lafitte, P. (2009). A model describing the
growth and the size distribution of multiple metastatic tumors.
Discrete and Continuous Dynamical Systems - Series B,
12(4), 731–767.
[21] Carrillo, J. Antonio, Goudon, T., & Lafitte, P. (2008). Simulation of fluid and
particles flows: Asymptotic preserving schemes for bubbling and flowing
regimes. Journal of Computational Physics,
227(16), 7929–7951.
[22] Carrillo, J. Antonio, Goudon, T., Lafitte,
P., & Vecil, F. (2008).
Numerical schemes of diffusion asymptotics and moment closures for
kinetic equations. Journal of Scientific Computing,
36(1), 113–149.
[23] Lafitte, P., Parris, P. E., & Bièvre, S. D. (2008). Normal transport
properties in a metastable stationary state for a classical particle
coupled to a non-ohmic bath. Journal of Statistical Physics,
132(5), 863–879.
[24] Godillon-Lafitte, P., & Goudon, T. (2005). A coupled model for
radiative transfer: Doppler effects, equilibrium, and
nonequilibrium diffusion asymptotics. Multiscale Modeling and
Simulation, 4(4), 1245–1279.
[25] Godillon, P. (2003).
Green’s function pointwise estimates for the
modified lax-friedrichs scheme. Mathematical Modelling and Numerical
Analysis, 37(1), 1–39.
[26] Godillon, P., & Lorin, E. (2003). A Lax shock
profile satisfying a sufficient condition of spectral instability.
Journal of Mathematical Analysis and Applications,
283(1), 12–24.
[27] Godillon, P. (2001). Linear
stability of shock profiles for systems of conservation laws with
semi-linear relaxation. Physica D: Nonlinear Phenomena,
148(3-4), 289–316.
[1] Goudon, T., Lafitte, P., & Mascia, C. (2023). Shock profiles for
hydrodynamic models for fluid-particles flows in the flowing regime.
Accepted for Publication in Proceedings of XVIII International
Conference on Hyperbolic Problems: Theory, Numerics, Applications
(HYP2022).
[2] Taki, A.-B., Atsou, K., Casanova,
J.-J., Goudon, T., Lafitte, P., Lagoutière, F., & Minjeaud, S. (2021). Numerical investigations
of the compressible Navier-Stokes system. In
ESAIM: Proceedings and Surveys (Vol. 70, pp. 1–13). EDP
Sciences.
[3] Grisey, A., Yon, S., Pechoux,
T., Letort, V., & Lafitte, P. (2017). Numerical study and ex vivo
assessment of HIFU treatment time reduction through
optimization of focal point trajectory. In AIP Conference
Proceedings (Vol. 1821).
[4] Lafitte, P. (2011). Preface of the
"symposium on asymptotic preserving schemes and
applications". In AIP Conference Proceedings (Vol.
1389).
[5]
Goudon, T.,
Lafitte, P., &
Rousset, M. (2010). Modeling and simulation of
fluid-particles flows. In
Some problems on nonlinear hyperbolic
equations and applications (Vol. 15, pp. 100–130). Higher Ed.
Press, Beijing.
https://doi.org/10.1142/9789814322898\_0005
[6]
Boudin, L.,
Boutin, B.,
Fornet,
B.,
Goudon, T.,
Lafitte, P.,
Lagoutière, F., &
Merlet, B. (2009). Fluid-particles flows: A
thin spray model with energy exchanges. In
CEMRACS
2008—Modelling and numerical simulation of complex
fluids (Vol. 28, pp. 195–210). EDP Sci., Les Ulis.
https://doi.org/10.1051/proc/2009047
[7]
De Bièvre, S.,
Lafitte, P., &
Parris, P. E. (2007). Normal transport at
positive temperatures in classical
Hamiltonian open
systems. In
Adventures in mathematical physics (Vol. 447, pp.
57–71). Amer. Math. Soc., Providence, RI.
https://doi.org/10.1090/conm/447/08682
[8] Godillon-Lafitte, P. (2003). Green’s
function pointwise estimates for the modified
Lax-Friedrichs scheme. In Hyperbolic
problems: Theory, numerics, applications (pp. 539–547). Springer,
Berlin.
[9] Godillon, P. (2001). Linear stability
of shock profiles for systems of conservation laws with semi-linear
relaxation. In Hyperbolic problems: Theory, numerics, applications,
Vol. I, II
(Magdeburg, 2000) (Vols. 140, 141, pp. 445–452).
Birkhäuser, Basel.